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INTRODUCTION

The problem of the identification of underwater blasts has gained increased interest
recently in the context of the monitoring of a possible comprehensive test ban treaty
(CTBT). At the recent CTBT Monitoring Technologies Conference, held in Sand Diego in
September of 1994, a number of papers were presented which reviewed how the hydro-
acoustic method can be used to monitor underwater explosions. Underwater explosions
can be identified by distinctive features, primarily bubble-pulse signatures and fast rise
times, recorded on high frequency hydroacoustic signals. These signatures may be
observable over distance ranges in the ocean in excess of 1000 km because of the unique
propagation conditions in the SOFAR channel of the deep ocean. Some of the papers at the
CTBT Conference (e.g., Phillips, 1994) suggested that these kinds of signatures could
only uniquely be detected and analyzed using hydoacoustic sensors, and that seismic
sensors had limited utility because of their location and limited bandwidth.

The purpose of this paper is to point out that land-based seismic sen-
sors can and have been used to detect and identify underwater explosions,
and that hydroacoustic sensors are not always required. Presumed underwater
explosions have been detected by the regional array system in Scandinavia (NORESS,
FINESA, ARCESS) and examples of these events will be presented in this paper.
Techniques and systems used to discriminate explosions and earthquakes on land can also
be used to identify events in the oceans using seismic recordings.

Land-based seismic sensors may serve best for monitoring for explosions near the
coast in shallow-water environments, and the examples of presumed underwater blasts pre-
sented in this paper fall in this category. Some concern has been expressed that event iden-
tification of underwater blasts near the coast may be problematic using long range
hydroacoustic sensors because of the shallow water environment, energy-absorbing silt
layers at the bottom, and a distorted sound channel may result in poor sound propagation
conditions (White et al, 1995). In these situations, land-based sensors within a few hun-
dred kilometers of the coast may be more effective at detecting the seismic signals which
couple into the earth than would hydroacoustic sensors in detecting the hydroacoustic sig-
nals propagating over a longer distance through the laterally heterogeneous sound channel.

In this paper, we first discuss the seismic data recorded at the regional arrays from
presumed blasts in the shallow-water environments of the Gulf of Bothnia and the Baltic
Sea. The blasts are called “presumed underwater blasts” because, although seismic sensors




located the events offshore, we have no ground truth at present to confirm that they were
actually underwater sources. We then discuss the signal analysis techniques from the
Intelligent Seismic Event Identification System (ISEIS) (Baumgardt et al, 1991b) that indi-
cates that the events were blasts set off in the shallow marine environment. In addition to
showing the utility of narrow-band seismic sensors for monitoring underwater explosions,
this paper also demonstrates how synergy between seismic and hydroacoustic methods for
identification can be achieved by using seismic signal analysis techniques on both seismic
and hydroacoustic data.

EVENT LOCATIONS AND PROPAGATION PATHS

Figure 1(a) shows the locations of the events in the Gulf of Bothnia off the east
coast of Sweden and in the Baltic near southern Norway which we believe to be underwa-
ter blasts. Tables 1 and 2 list the event parameters, determined by the Intelligent
Monitoring System (IMS), along with the assigned event numbers, called the ORIDs.

Table 1 below lists the locations of the events located in the Gulf of Bothnia.

Table 1: Source Parameter for Presumed Explosions and Earthquakes in the

Gulf of Bothnia '
ORID DATE Origin Time Latitude Longitude Local Source
(Deg. N.) (Deg. E) Magnitude  Type
70 (1) 09/24/85 09:55:37 60.90 20.40 2.2 Exp (2)
366137 05/05/92 14:05:13 58.89 18.17 1.6 Exp (2
366138 05/06/92 08:01:11 59.04 18.17 1.6 Exp (2
366139 05/18/92 13:37:03 58.76 18.16 1.7 Exp (2)
366145 09/09/92 22:34:51 59.00 18.23 2.0 Exp (2)
202414 08/22/90 04:08:30 63.86 20.81 2.1 Eq 3

(1) This event only recorded at NORESS. Event location from Helsinki bulletin.
(2) Underwater explosion source types are presumed.
(3) Earthquake identification based on felt reports in Scandinavia.

The events labeled Region 1 in Figure 1(a) are events in the Gulf of Bothnia east of
Sweden which were recorded at the FINESA and NORESS arrays with ORIDs 366137,
366138, 366139, and 366145. These events were located by the Intelligent Monitoring
System (IMS) (Bache et al, 1990). These events occurred in the same region as the




Figure 1: (a) Topographic map showing locations of the presumed underwater explosions
and the propagation paths to the NORESS (NRAO) array.




sources for Project BABEL (BABEL Working Group, 1993) although we have no
information that these events were associated with this program.

Region 2 contains an event in 1985, with ORID 70 in Table 1, which was listed in
the Helsinki seismic bulletin and was recorded only at NORESS. (The FINESA array had
not yet been installed.) This event occurred in an aseismic region in the middle of the Gulf
of Bothnia, which suggests that the event may actually have been an explosion.

The Region 3 event parameters, shown in Figure 1(a), are given below in Table 2.

Table 2: Source Parameter for Presumed Explosions and an Earthquake in the
Offshore Stavenger Region of Southern Norway Recorded at NORESS

ORID DATE Origin Time  Latitude Longitude Local Source
: (Deg N.) (Deg. E) Magnitude  Type
58 11/20/85 22:10:44 57.61 5.67 2.3 Exp (1)
59 11/20/85 22:24:38 57.66 5.72 2.2 Exp (1)
60 11/20/85 22:57:11 57.63 6.27 2.2 Exp (1)
61 11/20/85 23:10:47 57.66 5.35 2.3 Exp (1)
62 11/20/85 23:17:29 57.69 5.45 2.3 Exp (1)
63 11/20/85 23:23:10 57.64 5.62 2.2 Exp (1)
64 11/20/85 23:28:23 57.58 5.49 2.2 - Exp(D
192482 02/26/90 20:30:16 57.51 7.27 3.06 Eq @

(1) Underwater source types are presumed. Locations from Suteau-Henson and Bache (1988).
(2) Earthquake identification based on felt reports in Norway. Location determined by IMS.

Region 3, which we call the Stavenger offshore region, contains a group of
presumed underwater blasts (ORIDs 58 through 64 in Table 2) originally studied by
Suteau-Henson and Bache (1988). They called these events earthquakes because of their
location in the Baltic Sea. Also included in Region 3 is a felt earthquake (ORID=192482)
which will compared with the presumed blasts for discrimination purposes.

Figures 1(b), (c), and (d) show bathymetric cross sections from Regioqs 1, 2, and
3 to the NORESS array. The horizontal dashed line indicates sea level and the solid line
shows the bathymetry in meters. For the events in the Gulf of Bothnia, Regions 1 and 2,
the maximum water depths along the path are on the order of 50 to 100 m.. The water

depths in the Stavenger offshore region in the Baltic Sea, Region 3, are between 175 and
380 m.
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Figure 1: (b,c,d) Bathymetric/topographic cross sections for the propagation paths to the NORESS
array (NRAO) from the three underwater explosion regions shown on the map in Figure 2(a). (b)
East Coast of Sweden - Gulf of Bothnia (Region 1), (c) Central Gulf of Bothnia (Region 2), (d)
Baltic Sea - Stavenger offshore region (Region 3).
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Figure 2(a) shows the great circle path on a topographic map from Region 1 to
FINESA. The bathymetric cross section for this path is shown in Figure 2(b). This path
has water depths between 50 to 75 m in the distance range of 100 to 200 km from the
source region. As shown in the figure, some of the events are located near the coast and on
land. However, the 95% confidence ellipse axes of the IMS locations are between 7 and
14 km for the semiminor axes and 24 to 50 km for the semimajor axes.

Although we have no ground-truth to confirm that these events were underwater
explosions, their estimated locations place them well offshore. We show in this paper that
the waveform characteristics are definitely consistent with these events being underwater
explosions in these near-coastal regions.

SPECTRAL/CEPSTRAL ANALYSIS

One of the most direct ways of detecting underwater explosions is to detect bubble
pulses. Hydroacoustic studies (e.g., Mitchell et al, 1976; Urich, 1983) have shown how
bubble pulse delay times can be inferred from spectral modulation periods. Baumgardt and
Ziegler (1988) showed how time-independent spectral modulations produced by ripple-
fired mine blasts could be identified by finding peaks in cepstra derived from the spectra.
An automated method for finding time-independent cepstral peaks, called the Multiple
Event Recognition System (MERSY), was described by Baumgardt et al (1991a). The
same method should work to identify bubble pulses, since they are like ripple fired blasts in
that the bubble pulse would be an “echo” of the primary pulse produced by the explosion in
the water. Studies of acoustic data have shown that the differences in the peaks and troughs
of the spectral modulation may be as great as 6 to 10 dB at distances of hundreds of miles
(Mitchell et al, 1976). The primary and first bubble pulse should act as delayed sources
with each generating a full complement of regional phases when recorded seismically.

Figure 3(a) shows an example of one of the Region 1 events, ORID = 366137,
recorded at one of the array elements (FIB2) in the FINESA array (FIA0). The phase iden-
tifications of the analyst are indicated with the lines. The four regional phases identified as
Pn, Pg, Sn, and Lg, clearly have high signal-to-noise ratio. Figure 3(b) shows the wave-
form zoomed over the four second time interval from 159.1 seconds to 162.1 seconds in
the Pn wavetrain. This zoomed waveform reveals a pulse-echo type pattern in the wave-

form which repeats at intervals of about one time interval, which is about 0.5 seconds. We
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Figure 3: (a) Waveform for FINESA recording of a presumed blast in Region 1. (b)
Expanded plot of the Pn coda showing periodic pulse-echo pairs.
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will show that this pulse-echo pattern persists throughout the entire time series and is
caused by the bubble pulse produced by the underwater explosion.

Figure 4 compares incoherent beam waveform envelopes for the Region 1 event
recorded at the two arrays, FINESA (a) and NORESS (b). These envelopes were com-
puted from 1 second time windows averaged across all the vertical component traces of the
arrays after the traces were bandpass filtered in 9 frequency bands. The waveform en-
velopes recorded at these two arrays differ in the relative amplitudes of the phases and the
fact that the Pn and Sn phases are much less apparent at NORESS than at FINESA. Since
this is the same event, the difference in waveform envelope shapes must be due to differ-
ences in the propagation paths and the difference in the distances. Perhaps the Sn phase is
attenuated along its path from Region 1 to NORESS, although the Pg and Lg waves seem
to propagate efficiently along this path.

Figure 5 (a) and (b) show array-averaged spectra computed for the events in Figure
4. These spectra were computed for time windows on each of the phases beginning at the
start times shown in Figure 4 and on the noise ahead of the Pn phase. Spectra were com-
puted on all the traces of the arrays and averaged and the NORESS short-period instrument
response was removed. These plots show a very clear spectral modulation or scalloping
which is the same in all the phase spectra. This scalloping is obviously not apparent in the
noise. This scalloping results from the interference and correlation of the pulse-echo pairs
which comprise the entire waveform.

Figure 6 (a) and (b) show the cepstra computed from the spectra in Figure 5 (a) and
(b), using methods described by Baumgardt and Ziegler (1988) and Baumgardt et al
(1991a). In brief, the linear trends of the spectrums in Figure 6 were removed and low-fre-
quency blowup, due the removal of the instrument response, was removed. The logarithm
of the instrument corrected amplitude spectrum was then Fourier transformed to produce
the cepstrums in Figure 6.

Time independent spectral modulations should produce cepstral peaks which line up
in quefrency for all associated phases. The MERSY system in ISEIS automatically identi-
fies such phases. The vertical line in Figure 6 (a) and (b) marks the cepstral peaks so iden-
tified by MERSY which have the same quefrency at both the FINESA and NORESS ar-
rays. The main cepstral peaks line up at quefrencies of about 0.45 seconds, or 450 mil-
liseconds. This cepstral peak is very strong at both arrays and indicates that the seismo-
grams at both arrays cor'lsist of a series of pulse-echoes with time delays of 450 ms.

9
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(b) Incoherent beam for the same event recorded at NORESS. The waveforms were
prefiltered in the 9 filter bands indicated. Beams have been shifted for display.
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Figures 7 (a) and (b) show two examples of the earlier offshore Stavenger events,
recorded only at NORESS. As in the case of the Gulf of Bothnia event, these spectra have
a very evident spectral scalloping which is the same in all the four phases associated with

the event.

Figures 8 (a) and (b) .show the cepstra computed for the two events. Both events
have cepstral peaks at times less than 0.4 second. MERSY also picked a second peak near
0.4 seconds on the cepstrum in Figure 8 (b). This peak is probably also present in Figure
8 (a) but wasn't strong enough to be selected by the MERSY automatic peak picker.

Figure 9 (a) through (f) shows a selection of cepstra from several events. The
peaks labeled BP are interpreted as resulting from the interference of the primary and
bubble-pulse signals generated by the explosions. Generally, these events seem to have
delay times between 0.4 and 0.65 seconds.

We also have observed peaks at lower quefrency for some of the events. Figure 9
(c) and (¢) shows examples of one such peak at about 0.2 to 0.25 seconds which was
recorded at both the NORESS and FINESA arrays at the same time. Figure 9 (f) is for
event 70 in Region 2 in the middle of the Gulf of Bothnia. These peaks are labeled WCB
which stands for “water column bounce” because the delay times are close to the expected
two-way acoustic travel times in the water column. These peaks are sometimes associated
with a negative peak (trough) at about 0.2 seconds or less, which MERSY usually doesn’t
pick up. MERSY only picks positive peaks. The low quefrency peaks observed for the
southern Norway events in Figure 8 (a) and (b) may be other examples.

BUBBLE PULSE PERIODS

As mentioned above, these strong modulations observed in the spectra and the
strong cepstral peaks in the cepstra of these events appear to result from the interference of
the primary shock and bubble pulse in the water. Such phenomena have often been ob-
served in offshore recordings on hydrophones. The strength of these signals recorded on
land by seismic sensors attests to the efficient coupling of the explosions detonated in the
water.

The dynamics of bubble pulses, or “cavitation,” have been studied extensively in
hydroacoustics since World War II. Figure 10 schematically illustrates how bubble pulses

13
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Bubble pulse (BP) peaks and water column reflection (WCB) peaks are indicated. All
phase cepstra have been shifted up from the noise cepstra for viewing purposes.
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Figure 10: Schematic illustration showing how pressure pulses are produced by
pulsations and migration of the bubble pulse. Positive pressure pulses are produced by

the compression and rebound of the gas spheres generated by the underwater explosion.
(After Urick, 1983).
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from underwater explosions produce pressure pulses recorded acoustically and seismically.
After the initial shock front is produced by the explosion, there follow a series of positive
pressure pulses generated by the expanding and contracting gas sphere which rises to the
surface. The amplitude of the pulses decays steadily as the energy in the expanding gas
spheres dissipates and as the bubble rises to the surface.

As shown in Figure 10, the pressure can be negative during the last stage of the
growth of the bubble and the initial phase of collapse (Ross, 1976). The acoustic signals in
the water are produced by the bubble during the rebound phase, and the pressure pulse is
positive. Theoretically; for explosions which produce vaporous bubbles, the positive pres-
sure pulse will be higher frequency than the negative pressure pulse and much larger in
amplitude. If the partial gas pressure in the bubble is less than 2% of the peak pressure in
the bubble at maximum radius in the growth stage, the amplitude of the positive pulse will
exceed the negative pulse amplitude by a factor of several hundred (Ross, 1976, p. 220).
Measurements indicate that the second bubble pulse amplitude will decay to 1/5 the ampli-
tude of the first bubble pulse (Urick, 1983).

Thus, for smaller underwater blasts, we would expect to only observe one of the
bubble pulses, and it would have the same polarity as the primary pressure pulse. The
acoustic pressure time function would be

p(t)=p,(1y+pp(=T). (1)

where pe is the explosion pressure function, pp is the bubble pulse pressure function, end
T is the delay time between the initial explosion time the first rebound phase for the first
bubble pulse. We assume the second bubble pulse pressure falls below the recording
threshold of the acoustic/seismic sensor. Assuming perfect correlation, except for ampli-
tude, between the explosion and bubble pulse, we have

p(t)=p(t)+op,(t=T), 2

where « is the amplitude scaling constant, which is between 0 and 1. The power spectrum,
P(w) of (2), is then

2

P(a))=Pé(a))(1+a +20coswT), 3)
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where Pe is the power spectrum of the initial pressure pulse. Thus, (3) shows that the sin-
gle bubble-pulse model will produce a spectrum consisting of the spectrum of the initial
explosion pressure function modulated by a periodic function with frequiancy periodicity of
the inverse of the bubble-pulse time delay.

The time delay between the explosion prcssure.pulse and the first bubble pulse has
been derived from theory (Willis, 1941) and verified by a number of studies (Cole, 1948)
to be of the form

Kol/3

T=—"Y
(d+33)7/6°

)

where X is a proportionality constant, which depends on the type of explosive, w is the
charge size in lbs, and d is the depth of the explosions in ft. For TNT, K is equal to 4.4.

Figure 11 shows plots of the bubble pulse delay time versus water depth for charge
sizes ranging from 10 to 2000 Ibs. We do not know the exact yields of these charges, but
the delay times and depths of the events in the Gulf of Bothnia and in the Baltic Sea are
consistent with charge yields on the order of 10 to over 100 lbs.

WATER COLUMN REVERBERATIONS

As we pointed out above, a number of cepstra had low quefrency peaks. Figures 8
(a) and (b) show some examples for the Baltic Sea region. The event in Figure 8 (a) has a
peak near 250 ms which was picked by MERSY. This same peak is also evident in Figure
8 (b) as well as the higher quefrency peak at about 400 ms, both of which were automati-
cally picked by MERSY. It should be noted that MERSY only picks positive peaks. The
low quefrency peaks may actually be negative, such as those shown in Figures 9 (c), (e),
and (f). Negative cepstral peaks correspond to a multiple source where the second pulse
has reversed polarity relative to the first pulse. Thus, these low-quefrency peaks may
result from a single water-column reverberation (WCB), which would be expected to have
reversed polarity relative to the initial explosion shock pulse.

The water depths in the Gulf of Bothnia are, on average, about 388 ft. Assuming
sound speed of 5000 ft/sec, this gives an approximate delay time (two way travel time) of
about 155 ms. This is consistent with the time delays observed in Figure 9 for the Gulf of
Bothnia. For the Baltic Sea, the water depths are on average about 984 ft which gives
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Figure 11: Curves of theoretical bubble-pulse delay times versus water depth of charge
for different charge sizes. The average water depths and observed delay times for
charges in the Gulf of Bothnia and Baltic Sea are shown in red, which give yields of
charges between 10 Ibs for the Gulf of Bothnia to greater than 100 Ibs for the Baltic
Sea.
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longer delays of about 393 ms. Again, this delay is consistent with those observed for the
Baltic Sea in Figure 8.

REGIONAL P/S AMPLITUDE RATIOS

Recent discrimination studies have shown that the high-frequency ratio between the
amplitude of the regional P (I”n, Pg) and S (Sn, Lg) can discriminate explosions and earth-
quakes. For example, Baumgardt and Young (1990) showed that in Scandinavia, explo-
sions have higher Pn/Sn and Pn/Lg ratios than earthquakes in the 8-10 Hz band. We now
consider the presumed underwater explosions to see if they have ratios expected for explo-

sions.

Figure 12 compares frequency filtered NORESS waveforms for one of the Baltic
Sea events (ORID = 58) (a) and a nearby event (ORID = 192482) (b) which is known to
be an earthquake because it was felt in the region (NORSAR Staff, personal communica-
tion). The major identified phases, Pn, Pg, Sn, and Lg are indicated. Comparing these
two events shows clearly that the shear waves are small for the explosion in Figure 12 (a)
at frequencies above 8 Hz but remain large for the earthquake in Figure 12 (b). So, the dis-
criminant seems to hold in this case.

Figure 13 (a) and (b) shows two events, both presumed blasts, recorded at
NORESS from the Gulf of Bothnia. These examples present a very different picture than
the Baltic Sea blast in Figure 12 (a). In these cases, the shear waves remain large at high
frequency. Large Pg waves are evident in the 3-5 and 4-6 Hz bands for the event
(ORID=366145), but otherwise, the Pn waves are very emergent in all frequency bands.
The Lg energy seems to exceed the Pn energy in all bands.

In Figure 14, the measurements of the logarithm of the Pn/Lg amplitude ratio in the
8 to 10 Hz band are shown plotted versus distance of the event from the stations. The
ratios were computed using maximum rms amplitudes measured on the incoherent beams
like those shown in Figure 4. All the data points shown, with the exception of the Gulf of
Bothnia explosions, were measured at NORESS only. Some of the earthquake and mine
blast points were taken from the study of Baumgardt and Young (1990). The more distant
earthquake points between 780 and 900 km are measurements from the Steigen earthquake
swarm in Northern Norway recorded at the NORESS array (Atakan, 1992). The Gulf of
Bothnia points at about 540 km are the measurements at FINESA for the 1992 events.
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Figure 12: (a) Broadband and filtered NORESS waveforms for one of the Stavenger
offshore presumed underwater blasts in Region 3. (b) NORESS waveforms for an
earthquake in the same region which was "felt." Comparison of (a) with (b) shows that
the explosion has larger Pn than Sn and Lg at high frequency whereas the earthquake has
larger Sn and Lg than Pn.
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Figure 13: Comparison of broadband and filtered NORESS waveforms for two events in
the Gulf of Bothnia, one in Region 1 (a) and the Region 2 (b) events. These plots show
that at high frequency the Sr and Lg waves are less amplitude than the Pn waves.
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The points in Figure 14 (a) are the raw data points uncorrected for distance. Also
shown on this plot is a distance correction curve obtained by Baumgardt and Der (1995)
from the single-phase amplitude versus distance formulas of Sereno (1990). Although this
curve is above most of points, its shape seems to describe the distance dependence of the
points. In Figure 14 (b), the ratios have been corrected to a common distance (500 km)
using the curve. ’

This plot shows that the Baltic Sea events are clearly explosion like since they have
Pn/Lg ratios comparable to the nearby Titania mine blasts and are above the earthquake
points. However, the Gulf of Bothnia points are more enigmatic. They are lower than the
Baltic Sea events and mine blasts and are comparable to the earthquakes, as is apparent in
Figure 13. The Gulf of Bothnia events appear to have larger shear waves than what would
be expected for most explosions.

What causes the large shear waves in the Gulf of Bothnia events? Mine blasts with
large shear waves have been observed previously (Baumgardt, 1994). However, we usu-
ally associate these shear waves with rock fracturing or spalling in the mines. No such de-
formation occurs in underwater blasts. Assuming these events are blasts detonated in the
water, shear waves cannot be produced by the source itself. The shear waves can only be
coming from mode conversion from P waves in the sedimentary layers on the sea bottom
and other discontinuities deeper in the crust.

Sereno and Orcutt (1987) have shown theoretically how oceanic phases, sometimes
referred to as Po and So (Walker, 1982), can propagate efficiently in the oceanic litho-
sphere. Scattering may account for the large shear waves coming from the Gulf of
Bothnia. Moreover, many studies have suggested that the attenuation of Pn may be greater
than that of Sn in some ocean basins. Sereno and Orcutt (1987) have shown that the
greater efficiency of Sn propagation is an intrinsic characteristic of the oceanic lithosphere.
We observe weak Sn waves at NORESS as is evident in Figure 4. Perhaps the Sn energy
has been scattered into Lg waves by heterogeneities along the path from the Gulf of
Bothnia to NORESS. These same characteristics may exist for the paths from the Gulf of
Bothnia to NORESS and FINESA. The larger Pn/Lg ratio for the Baltic Sea-to-NORESS
path may be due to low P-to-S scattering there. The sediment properties in the Baltic Sea
may be different than those in the Gulf of Bothnia, which may account for the different
scattering levels.

25




CONCLUSIONS

This study has shown the efficiency of coupling of acoustic sources in the water to
seismic sensors well inland which means that near-coast underwater blasting activities can
be monitored seismically. Thus, hydroacoustic sensors and extreme high-frequencies are
not required to monitor possible blasting activity in shallow marine environments. The
seismic methods developed for monitoring ripple firing in mine blasts can also be exploited
for the detection of bubble pulses in underwater blasts.

Underwater explosions are somewhat analogous to decoupled explosions in large
cavities because the seismic wave generation is almost entirely elastic: no inelastic deforma-
tions are involved. Of course, the coupling in water is much better than gas coupling in a
large cavity in rock. However, even though the underwater blast sources are purely com-
pressional, large shear waves can be generated. This again indicates that caution must be
used when using the P/S ratio discriminant, as pointed out by Baumgardt (1994). The
sediment conditions in the Gulf of Bothnia seem to be ideal for the generation of large shear
waves and an underwater blast can be made to look like an earthquake. In such cases, the
bubble pulse must be detected to identify the event as an explosion.

This then raises the question of whether an evasion scenario can be devised to make
the explosion in the ocean look like an earthquake and destroy the bubble pulse. One pos-
sibility, similar to the scenario suggested by White et al (1994), would be a detonation in
the shallow ocean where the bubble would break the surface before the collapse pulse is
produced. Thus, the explosion may be enough contained to not be picked up atmospheri-
cally but the bubble pulse would not be observed acoustically or seismically. However, the
primary and single-water column reverberation could be picked up and the explosion may
identified. Thus, when monitoring underwater explosions, no one single discriminant can
be relied upon by itself, and all possible evasion scenarios need to be considered.
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